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We study a two-dimensional reaction-diffusion equation for calcium oscillation with a pacemaker region.
When the pacemaker entrains the whole system, circular waves are observed as a target pattern. However, if
the pace of the pacemaker is too fast, the pulse propagation to the outer region sometimes fails in a chaotic
manner. We find that spiral waves are spontaneously created at the interface between the pacemaker region and
the outer region.
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Spiral waves in oscillatory and excitatory media are found
in various systems such as the Belousov-Zhabotinskii reac-
tion, cellular slime molds �1�, oscillatory oxidation of carbon
monoxide on a Pt�110� surface �2�, and ventricular tachycar-
dia �3�. In the problem of cardiac dynamics, spiral formation
leads to serious irregular pulse, and it is important to under-
stand the mechanism of the spiral formation. Several mecha-
nisms to generate spirals are known. In the Belousov-
Zhabotinskii reaction, spirals are generated when a piece of a
quasi-one-dimensional pulse is cut by stirring the solution
locally or light impulse �4�. A spiral is created when the
waves surround a sharp edge �5�. In these cases, wave propa-
gation is stable. On the other hand, if some kinds of instabil-
ity such as the lateral instability or the alternans instability
occur in quasi-one-dimensional traveling pulses or the mean-
dering instability occurs strongly in a single spiral, many
spiral pairs can be spontaneously created, which leads to
spiral chaos �6–8�. In this paper, we report another mecha-
nism of spiral formation: i.e., spiral formation at the interface
between a pacemaker region and an outer region. Spirals are
not successively created like the case of spiral chaos, because
the quasi-one-dimensional pulse propagates stably in the
outer region. The failure of the frequency locking or the
desynchronization between the pacemaker region and the
outer region plays an essential role for the spiral formation.

We will show the spiral formation at the interface between
the pacemaker region and the outer region in a model of Ca2+

waves. The calcium ion �Ca2+� is one of the most versatile
and universal signaling agents in biological processes from
fertilization, cell proliferation, muscle contraction, and syn-
aptic plasticity and apoptosis, and Ca2+ oscillation plays im-
portant roles in some of those processes �9�. It is considered
that some information such as strength of input signal is
encoded in the frequency of the Ca2+ oscillation and trans-
mitted as the Ca2+ wave. Intracellular Ca2+ waves were ob-
served first in medaka eggs �10� and then observed in various
cells such as epithelial cells �11�, astrocytes syncitium �12�,
and endothelium cells �13�. Spiral waves were observed in
Xenopus oocytes �14� and hippocampal slice cultures �15�.
Spatiotemporal organization by Ca2+ dynamics from the sub-
cellular to organ level was reviewed by Dupont et al. �16�. A
number of theoretical models for the Ca2+ oscillation have
been proposed, and the numerical simulations have been per-

formed �17�. Falcke et al. found spiral breakup and spiral
chaos �18� and localized spiral waves owing to the dispersion
gap in a model of Ca2+ oscillation �19�.

In this paper, we use one of the simplest models proposed
by Dupont et al. �20�. There are intracellular Ca2+ pools
�ER� in a cell. The uptake and release of Ca2+ from the Ca2+

store is controlled by cytosolic Ca2+ concentration. The
Ca2+-induced Ca2+ release can occur by a positive feedback
at the Ca2+ store. Two variables—the cytosolic Ca2+ concen-
tration X and the calcium concentration Y of the internal
store �ER�—are used in the model. The model equations are
written as

dX

dt
= V0 + kfY − kX − V1�X,Y� + V2�X,Y� ,

dY

dt
= V1�X,Y� − V2�X,Y� − kfY , �1�

where V0 is a steady flow of Ca2+ to the cytosol, −kX denotes
the uptake from the cytosol, V1�X ,Y� denotes active uptake
of Ca2+ from the cytosol to the internal store, V2�X ,Y� de-
notes active release of Ca2+ from the internal store to the
cytosol, and kfY is a diffusional flow of Ca2+ from the inter-
nal store to the cytosol. The active flows are assumed to take
the form
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FIG. 1. Maximum and minimum values of X as V0 is
changed.
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V1�X,Y� =
V1mX2

k2
2 + X2 ,

V2�X,Y� =
V2mX4Y2

�ka
4 + X4��kr

2 + Y2�
. �2�

The parameter values are set to be kf =2, k=6, V1m=65,
V2m=500, k2=1, ka=0.9, and kr=2 in this paper. We have
performed numerical simulation from an initial condition X
=0.2 and Y =0.2 to show it. Figure 1 displays the maximum
and minimum values of X during the time evolution, as V0 is
changed. The limit cycle oscillation of Ca2+ appears for
1.77�V0�4.11.

Kepseu and Woafo studied a discretely coupled one-
dimensional model and found irregular oscillation �21�. We
study one- and two-dimensional models for the calcium os-
cillation. The model equation is

�X

�t
= V0 + a�x,y� + kfY − kX − V1�X,Y� + V2�X,Y� + D�2X ,

�Y

�t
= V1�X,Y� − V2�X,Y� − kfY , �3�

where V0=1.3 and a�x ,y� denotes spatially dependent steady
flow of Ca2+. We have assumed a diffusion-type coupling.
The diffusion coefficient D is set to be 1. We have numeri-
cally calculated with a finite-difference method of time step
�t and grid size �x. If the grid size �x is not so small, the
model is interpreted as a discretely coupled system, but in
this paper, we use a rather small value �x=0.02 and it is a
good approximation to the reaction-diffusion equations �3�.

For time evolution, we have used the Runge-Kutta method
with �t=2.5�10−5.

First, we show the numerical results of one-dimensional
simulations. The system size is Lx=10, and no-flux boundary
conditions are used. The spatially dependent input a�x� is
a�x�=a0 for Lx /2−1�x�Lx /2+1 and a�x�=0 for x�Lx /2
+1,x�Lx /2−1. The central region Lx /2−1�x�Lx /2+1
plays the role of pacemaker if 0.47�a0�2.81. The outer
regions x�Lx /2−1 and x�Lx /2+1 act as excitable media.
Figures 2�a� and 2�b� display the time evolutions of X�x� for
�a� a0=2.6 and �b� a0=2. In the pacemaker region, the Ca2+

oscillation appears. The periodic stimuli from the pacemaker
region excite the outer regions, but the pulse propagation
succeeds only once in a while. The pulse propagation passes
through the outer regions every four times of the oscillation
in the central pacemaker region at a0=2.6; that is, the 4:1
frequency locking is attained between the pacemaker region
and the outer regions. The pulse propagation occurs irregu-
larly every three or four times of the oscillation in the central
pacemaker region at a0=2. We call this phenomenon chaotic
pulse transmission. The pulse propagation is not synchro-
nized for both sides of the central pacemaker region, because
which pulses are successfully transmitted to the outer regions
are different on the two sides, although they are emitted at
the same time from the center. Figures 3�a� and 3�b� display
time evolutions of X�x , t� at x=Lx /2 and Lx /5. The time evo-
lution at x=Lx /2 exhibits regular limit-cycle oscillation.
However, the time evolution is irregular and sporadic at x
=Lx /5 owing to the chaotic pulse transmission.

We have calculated the first Lyapunov exponent as a mea-
sure of chaos from the following linearized equation of Eqs.
�3�:
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FIG. 2. Time evolution of
X�x , t� for �a� a0=2.6 and �b�
a0=2.
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FIG. 3. �a� Time evolution
of X�x , t� at x=Lx /2 for a0=2.
�b� Time evolution of X�x , t� at
x=Lx /5 for a0=2.
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��X

�t
= kf�Y − k�X − V1X�X,Y��X − V1Y�X,Y��Y

+ V2X�X,Y��X + V2Y�X,Y��Y + D�2�X/�x2,

��Y

�t
= V1X�X,Y��X + V1Y�X,Y��Y − V2X�X,Y��X

− V2Y�X,Y��Y − kf�Y , �4�

where V1X=�V1�X ,Y� /�X, V1Y =�V1�X ,Y� /�Y, V2X
=�V2�X ,Y� /�X, and V2Y =�V2�X ,Y� /�Y. The first Lyapunov
exponent is calculated as the time average of the linear
growth rate of the norm ��dx���X�2+ ��Y�2��1/2. Figure 4 dis-
plays the first Lyapunov exponent as a function of a0. The
Lyapunov exponent is positive at a0=2, and it is almost zero
at a0=2.6, which is consistent with the time evolutions
shown in Fig. 2.

Next, we study pulse propagation in two dimensions. No-
flux boundary conditions are assumed at the boundaries. The
system size is Lx�Ly, where Lx is fixed to be 10 and Ly is
changed as a control parameter. First, we consider a quasi-
one-dimensional system. That is, a�x ,y� take a0=2 in a lin-
ear banded region Lx /2−1�x�Lx /2+1 and a�x ,y� is 0 in
the other region. The chaotic pulse transmission in the one-
dimensional system implies whether the pulse transmission
occurs or not is different at each position of y if the coupling
in the y direction does not exist. On the other hand, the

diffusion coupling tends to make the pulse propagation uni-
form. There is a kind of competition between the chaotic
pulse transmission and the uniform pulse propagation. The
uniform pulse propagation is represented by a special one-
dimensional solution which satisfies X�x ,y�=X0�x� and
Y�x ,y�=Y0�x�. The pulse propagation is synchronized in the
y direction in this solution. We can study the linear stability
of the special solution by assuming that X�x ,y�=X0�x�
+�X�x ,y� and Y�x ,y�=Y0�x�+�Y�x ,y�. The perturbations
take the form of a linear combination of the Fourier modes
�X=�Xk�x , t�sin�k�y−Ly /2�� and �Y =�Yk�x , t�sin�k�y
−Ly /2�� with k= �2n−1�� /Ly or �X=�Xk�x , t�cos�k�y
−Ly /2�� and �Y =�Yk�x , t�cos�k�y−Ly /2�� with k=2n� /Ly
owing to the no-flux boundary conditions. The Fourier am-
plitudes �Xk and �Yk obey

��Xk

�t
= kf�Yk − k�Xk − V1X�X,Y��Xk − V1Y�X,Y��Yk

+ V2X�X,Y��Xk + V2Y�X,Y��Yk + D�2�Xk/�x2

− Dk2�Xk,

��Yk

�t
= V1X�X,Y��Xk + V1Y�X,Y��Yk − V2X�X,Y��Xk

− V2Y�X,Y��Yk − kf�Yk. �5�

The stability exponent or the transverse Lyapunov exponent
can be calculated as the time average of the linear growth
rate of the norm ��dx���Xk�2+ ��Yk�2��1/2. Figure 5�a� is the
stability exponent as a function of L=� /k. The stability ex-
ponent takes positive values for L=� /k�2.25. If the system
size Ly in the y direction is smaller than 2.25, the perturba-
tions with wave number k=� /Ly in the y direction are ex-
pected to decay. On the other hand, for Ly �2.25, the pertur-
bations in the y direction grow and the uniform pulse
propagation becomes unstable. Figure 5�b� displays a snap-
shot pattern for Ly =2. The pulse is propagating only in the
−x direction. The flat one-dimensional pulse is stable against
the perturbation in the y direction, because Ly is sufficiently
small. On the other hand, Fig. 5�c� displays a snapshot pat-
tern for Ly =8. The flat one-dimensional pulse becomes un-
stable in this wider system. The pulse propagation is success-
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FIG. 4. The first Lyapunov Ly exponent calculated by using Eq.
�4�.
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FIG. 5. �a� Stability exponent TLy as a function of L=� /k for a system with a linear pacemaker region calculated by using Eq. �5�. �b�
One-dimensional pulse for Ly =2, which is propagating in the −x direction. In the shaded region, X�0.5. �c� Traveling pulse with an end
point as a result of the lateral instability for Ly =8. In the shade region, X�0.5.
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ful for y�7, but the pulse propagation has failed for y�7.
As a result of the desynchronization, a pulse with an end
point appears and it leads to the spiral formation. Even if
desynchronization occurs, the flat one-dimensional pulse can
propagate, if the n :1 entrainment occurs completely between
the pacemaker region and the outer regions and the chaotic
behavior does not appear �22�. We have checked it for the
parameter value a0=2.6. Desynchronization and the resultant
chaotic pulse transmission are necessary conditions for our
phenomenon,

We have also performed of a numerical simulation of
a purely two-dimensional system, where a�x ,y� takes
a nonzero value a�x ,y�=a0=2 in r�r0 where r

=	�x−Lx /2�2+ �y−Ly /2�. In the outer region of r�r0,

a�x ,y� is set to be 0. The radius r0 of the pacemaker region is
changed as a control parameter. The system size is Lx�Ly
=16�16, and the no-flux boundary conditions are imposed.
Figure 6�a� displays a snapshot pattern at r0=1. �In the
shaded region, X�0.5.� In this case, the pulse propagation is
synchronized and circular waves propagate outwards. The
curvature effect works in the two-dimensional system with a
small pacemaker region in contrast to the quasi-one dimen-
sional system shown in Fig. 5. Figure 6�b� displays snapshot
patterns for r0=2. The circular waves become unstable and
the pulse propagates only locally from the pacemaker region
toward the outer region. In other words, the pulse transmis-
sion toward the outer region is successful in some sector, but
it fails in the other sector. The partial pulse transmission
leads to the formation of a pair of spirals. If the radius of the
pacemaker region is even larger, the circular pulse is broken
up into many wavelets at the interface, which grow to many
pairs of spirals. The spiral waves are stable in the outer re-
gion and no more spirals are further created in the outer
regions, which is qualitatively different from the case of spi-
ral chaos.

To summarize, we have found a mechanism of spiral gen-
eration at the interface between a pacemaker region and an
outer region owing to the chaotic pulse transmission at the
interface. The chaotic pulse transmission might be controlled
and can be used as an encoder of information, although bio-
logical evidence for this is not known. We have studied a
model of Ca2+ oscillation in this paper, but the phenomenon
is considered to be general, and we would like to study this
phenomenon also in other systems.
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FIG. 6. Snapshot patterns in a two-dimensional system with a
circular pacemaker region with radius �a� r0=1 and �b� r0=2. In the
shaded region, X�0.5.
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